TakTerdefinsi Quote: Sedangkan tak terdefinsi secara sederhana bisa dikatakan sebagai suatu hal yang mustahil dalam suatu sistem Quote: Jadi mana yang benar, 1/0 tak terdefinisi atau tak hingga? Quote: jadi setiap bilangan yang dibagi nol (0) akan menghasilkan tak terdefinisi, bukan tak hingga. Artinya memang tidak bisa dijelaskan.
Bismillah..... Yuhuuuu kembali hadir untuk berbag. Entah kenapa rasanya pengin nulis. Karena saya anak matematika, kayanya ngga afdol kalau saya tidak menulis tentang Matematika atau hal-hal terkait dengannya. Kali ini saya akan berbagi sedikit pengetahuan yang tentunya sudah familiar didengar di Matematika. Sebelumnya saya akan menceritakan sedikit kronologinya Suatu hari saya ditanya oleh anak pandu saya di jurusan pendidikan matematika kampus saya. Dia bertanya pada saya " mba sebenernya perbedaan antara tak terdefinisi dengan tak hingga itu apa ya?" Pertanyaan yang menggelitik sekaligus menyayat hati. Mengapa? karena saya sendiri yang sudah kulaih 2 tahun masih belum tau jawabannya. Wahh bagaimana ini? Akhirnya saya memutuskan untuk mencari tahu tentang kebenarannya. Dimulai dari mencari diinternet. Karena di internet saya pun masih mengalami kebingungan yang teramat dalam. Akhirnya saya memutuskan untuk bertanya melaui suatu forum diskusi. Akhirnya saya pun berhasil menyimpulkannya Berikut kesimpulan yang saya ambil sebagai berikut Tak Terdefinisi Contoh 8/0 hasilnya tak terdefinisi Mengapa? Andaikan ada suatu bilangan n sedemikian sehingga 8/0 = n Jika 8/0 = n maka = 8 Padahal semua bilangan yang dikalikan nol pasti hasilnya juga nol Sehingga n tidak ada. Jadi pengandaiannya salah atau kontadiksi dengan demikian sebenernya nilai n tidak terdefinisi Tak Hingga Tak hingga bukan merupakan bilangan, baik itu riil maupun kompleks. "Tak Hingga" digunakan merupakan suatu bentuk yang menunjukkan kondisi yang semakin membesar menuju tak hingga. Tapi bukan merupakan suatu nilai. Misalnya Limit fx = 1/x untuk x mendekati nol. Hailnya adalah tak hingga. Karena ketika x mendekati nol maka fx mendekati tak hingga. Bukan suatu bulangan tak hingga, melainkan hanya suatu bentuk yang semakin besar dan besar menuju tak hingga Tak Tentu Dalam perhitungan aritmatika kita sering menjumpai bentuk "tak tentu" atau dalam kata lain bentuk yang tidak bisa ditentukan karena adanya banyak kemungkinan bukan karena tidak ada hasilnya Misalkan 0/0 0/0 = 3 karena = 0 0/0 = pi karena = 0 berapapun bilangannya jika dikalikan nol pasti hasilnya nol Sekian semoga bermanfaat
Dalamkalkulus, tak hingga ( ∞) dapat kita perlakukan layaknya lambang suatu bilangan namun harus mengikuti beberapa aturan sebagai berikut: a + ∞ = ∞ untuk a ∈ Bilangan Real. a − ∞ = − ∞ untuk a ∈ Bilangan Real. a × ∞ = ∞ untuk a > 0 dan a ∈ Bilangan Real. a × ( − ∞) = − ∞ untuk a > 0 dan a ∈ Bilangan Real.
PerbedaanTak Terdefinisi, Tak Hingga dan Tak Tentu [masalah pembagian dengan 0] Januari 24, 2013 Tambah Komentar Edit Dalam matematika banyak sekali istilah yang perlu kita pahami.
TakTerhingga Simbol Infinity ∞ Tak hingga atau ananta (di bahasa Inggris: infinity atau infinite) yang sering ditulis ∞, adalah bilangan yang lebih besar daripada tiap-tiap yang kemungkinan dapat dibayangkan. Kata tak terhingga / infinity tersebut berasal dari kata Latin, yang berarti "tanpa akhir". Tak terhingga itu berlangsung selamanya, kadang-kadang bisa digunakan untuk ruang
Darimasalah inilah muncul istilah tak terdefinisi ( undefined) dan tak tentu ( indeterminate ). Misalkan: x x dibagi y y kemudian dikali y y maka hasilnya adalah x x: \displaystyle \frac {x} {y} \times \it {y} = \it {x} yx ×y = x x x dikali nol hasilnya adalah nol, berapapun nilai x x: x \times 0 = 0 x×0 = 0
NRIY8. qscd5i6xxy.pages.dev/264qscd5i6xxy.pages.dev/59qscd5i6xxy.pages.dev/238qscd5i6xxy.pages.dev/463qscd5i6xxy.pages.dev/167qscd5i6xxy.pages.dev/208qscd5i6xxy.pages.dev/498qscd5i6xxy.pages.dev/332
lambang tak hingga dan tak terdefinisi